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Abstract

®
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In this article, the analysis of Tsallis holographic dark energy (which turns into holographic dark
energy for a particular choice of positive non-additivity parameter ¢) in modified f (7, B) gravity
with the validity of thermodynamics and energy conditions for a homogeneous and isotropic
FLRW Universe has been studied. The enlightenment of the field equation towards

f(T, B) = aT™ + (3B", made possible by the fact that the model is purely accelerating,
corresponds to ¢ = —0.54 (Mamon and Das 2017 Eur. Phys. J. C 77 49). The generalized
second law of thermodynamics is valid not only for the same temperature inside the horizon, but
also for the apparent horizon for a change in temperature. The essential inspiration driving this
article is to exhibit the applicability that the holographic dark energy achieved from standard
Tsallis holographic dark energy and the components acquired from f(7, B) gravity are identical
for the specific bounty of constants. The analysis of energy conditions confirms that the weak

energy condition and the null energy condition are fulfilled throughout the expansion, while
violation of the strong energy condition validates the accelerated expansion of the Universe.
With the expansion, the model becomes a quintessence dominated model. The dominant energy
condition is not observed initially when the model is filled with genuine baryonic matter,
whereas it appears when the model is in the quintessence dominated era.

Keywords: Tsallis holographic dark energy, f(T; B) gravity, energy conditions, thermodynamics
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1. Introduction

Motivated by the outcome originating from the investigation
of black hole thermodynamics [1, 2], Hooft [3] proposed the
holographic principle (principle of quantum gravity) that all
of the evidence enclosed in a volume of space can be char-
acterized as a hologram, which relates to a theory locating on
the boundary of that space. Earlier, Susskind [4] presented a
specific string-hypothesis which clarified this principle.
Moreover, Maldacena [5] gives the best acknowledgment of
the holographic principle from its well-known AdS/CFT
correspondence. Observational evidence from a type-la
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supernova (SNe-Ia) suggests the Universe is increasing at an
accelerating rate [6], which suggests the existence of dark
energy with negative pressure and positive energy density
fulfilling the conditions of the equation of state. After the
sudden discovery of dark energy [6, 7], it has ended up being
one of the crucial issues in theoretical physics and the current
cosmology. Also, the present observations support a cosmo-
logical constant A being the source of dark energy driving the
present accelerated epoch of the Universe. This cosmological
model is called the ACDM model. Despite the fact that it is
favored by the observations, the ACDM model experiences
constant cosmological problems [8—11]. To overcome this,
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various dark energy models have been proposed. It is
accepted that the dark energy issue might be an issue of
quantum gravity. Accordingly, holographic principle may
play an important role in solving the dark energy issue. By
applying the holographic principle to dark energy Li e al [12]
anticipated the holographic dark energy model in which the
IR cut-off is favored as the size of things to come with the
event horizon of the Universe. This makes holographic dark
energy a very competitive candidate of dark energy. The
holographic dark energy can derive an accelerating expansion
of the Universe and is in great concurrence with the present
cosmological observation. As of late, the world view of
holographic dark energy has drawn a lot of deception and has
been widely considered. The generalized holographic dark
energy models have been observed in the investigation of
Jamil er al [13]. Sarkar [14] investigated a holographic dark
energy model with linearly varying deceleration parameters
and a generalized Chaplygin gas dark energy model for a
Bianchi type-I Universe, whereas Banerjee and Roy [15]
presented the stability of a holographic dark energy model.
Pasqua ef al [16] and Sing and Srivastava [17] studied the
consequences of three modified types of holographic dark
energy models in Bulk—Brane connection with viscous cos-
mology in a new holographic dark energy model and cosmic
acceleration, respectively.

A choice to represent the current accelerating cosmic
expansion is the modification in the Einstein gravity. The f(R)
theory of gravity [18] gives a characteristic unification of the
early-time inflation and late-time acceleration together with
the natural gravitational attraction in contrast to dark energy.
Likewise, this theory covers all the domains from the cos-
mological to the nearby planetary scales [19]. A few promi-
nent authors given in [20-30] have studied f(R) gravity for
various space-times in the different contexts of use. Due to
the occurrence of torsion without introducing dark energy, an
accelerated expansion of the Universe is seen in teleparallel
gravity, specifically f(7) gravity. Several authors [31-41]
have explored a few highlights of cosmological models within
the framework of f(7) gravity.

In view of cosmic acceleration, energy conditions (all the
more viably strong energy condition) is the subject of much
discussion as the strong energy condition is violated on a
cosmological scale of cosmic acceleration [42]. The violation
of this condition exhibits a transition from being attractive to
repulsive, which is just like the behavior of dark energy for
cosmic acceleration. Alongside these conditions are exten-
sively exploited as basic tools not only for the Hawking—
Penrose singularity theorems, but for the validity of the sec-
ond regulation of black hole thermodynamics [43]. In [44] is
the proof, no longer solely for an integral connection between
gravitation and black hole thermodynamics, but horizon
entropy and the vicinity of a black hole. Additionally, the
generalized second law of thermodynamics is an energizing
topic in an accelerating Universe which has been thought of
widely. Exploiting the Hawking temperature together with
Bekenstein entropy Wang et al [45] found that the laws of
thermodynamics are not valid at the event horizon. Hence-
forth, the Universe bounded by the event horizon is not a

perfect thermodynamic system, while modification of the
Hawking temperature is an ideal thermodynamic framework
[46]. Many authors [47-56] have examined thermodynamics
at the evident horizon with the Hawking temperature. As a
situation for good compatibility with observational data and
to describe the accelerated expansion of the Universe, some
contemporary models of teleparallel gravity, in which torsion,
the traces of the matter, energy—momentum tensor and
boundary term are addressed, are presented in [57-59]. Spe-
cifically, f(T, B) gravity has a better advantage because one
recovers the same formation in both scenarios of f(7) and
f(R) gravity. It is a great option in contrast to dark energy,
which is brought about by the consistency of teleparallel-
curvature, and is thus called f(R, T) gravity. Subsequently,
f(T, B) gravity attracts more attention from researchers.

Encouraged by the above discussions and outcomes, in
this article we have explored the type of holographic dark
energy called the Tsallis holographic dark energy model in
f(T, B) gravity by validating the second law of thermo-
dynamics in the model. In this paper, we talk about vitality
conditions for the isotropic homogeneous Friedman-Lemai-
tre—Robertson—Walker (FLRW) Universe model with a per-
fect fluid matter source in f(7, B) gravity. The paper is
presented as follows: in section 2, we formulate the field
equations in f(7, B) gravity relating the Tsallis holographic
dark energy source. Section 3 investigates field equations
corresponding to the FLRW Universe. In section 4, we derive
the solution of the field equation which corresponds to an
accelerated expansion. In section 5, the dynamical parameters
and their physical discussions are presented. Physical
acceptability and stability of the model utilizing the speed of
sound, energy conditions and validity of the generalized
second law of thermodynamics are given in section 6, while
section 7 contains the concluding remarks.

2. The f(T, B) gravity and Tsallis holographic dark
energy

Consider the action for the combination of f(R) and f(7)
gravity, namely f(7, B) gravity [59], as follows

S = fe(fL;B) + Lm)d4x,
K

where k2 = 87G and f(T, B) is a function of the torsion scalar
T and the boundary term B = %é?/,,(eT“) in which 7, = T},.

(D

L, and e = det(efl) are the matter action and determinant of
tetrad components, respectively.

By varying the action given in equation (1) with respect
to the tetrad, the field equation is defined as

2e8) VIV, 0pf — 2V, 0pf + eBOgfS;)
+ 4¢(9,0pf + 0,01 f)SI + 4el 0, (eSIMOrf

— 407y T S — ef6) = 16meT). )

As we know, in the standard cosmological model, the Uni-
verse is well thought out by a perfect fluid. Therefore, the



Commun. Theor. Phys. 72 (2020) 085402

S H Shekh et al

energy—momentum tensor for perfect fluid is written as
T) = (p + p)uyu — ps;, 3)

where p and p are the energy density and the pressure of
the fluid inside the Universe, respectively. Here, u” =
0,0,0,1) with u’u, = 1 are the comoving coordinates,
where u" is the four-velocity vector of the fluid. The non-zero
element of the energy—momentum tensor is given by

T’ =p T'=D=T= —p. “

Considering quantum corrections for the holographic dark
energy model, Tsallis and Cirto showed the black hole hor-
izon entropy as [50]

S5 = A, &)

where , is a constant, and ¢ refers to a positive non-additive
parameter. By setting 6 =1 and 7, = é
entropy is effectively recouped [60].

In [61] Cohen et al reproduced the holographic dark
energy in view of vacuum energy whose furthest cut-off
esteem is not well beyond the dark energy. Following the
above supposition one can accomplish the connection
between the framework entropy S, IR cut-off L and UV(A)
cut-offs as

the Bekenstein

D3N3 < 85374, (6)
Combing equations (5) and (6), one can find
A < y(@m)PLrs, @)

where A* represents the vacuum energy density.

In addition, expending the above equations (6) and (7)
Tavayef et al [60] proposed new a holographic dark energy
model, the so-called Tsallis holographic dark energy density
of the form

prupe = BL*™4, (8)
where B is an unknown parameter. The IR cut-off as the
Hubble horizon is given by

L= ©)
78
Using the above equation, we can get the Tsallis holographic
dark energy density from (8) as

prmpe = BHA=2. (10)

3. Metric and components of field equations

We consider the spatially homogeneous and isotropic FLRW
line element in the form

dr? 2402 2 win2 2
72+rd0 + r?sin® 0 d¢? |,
-

1 -k
QY

where a is the scale factor of the Universe, and (¢, r, 0, ¢)
are the comoving coordinates.

ds? =dr? — a2(t)[

The angle 6 and ¢ are the the standard azimuthal and
polar edges of circular directions, with 0 < 6 < 7w and
0 < ¢ < 27. The homogeneity of the Universe fixes a unique
edge of reference. Additionally, k is the constant describing
the curvature of the space. Here, k = 1 describes a closed
Universe, the flat Universe is acquired for k = 0 and k = —1
relates to an open Universe. In this work, we consider the flat
Universe taking k = 0 with endless range.

The equation of motion (2) for the spatially homo-
geneous and isotropic FLRW line element (11) with the fluid
of the stress—energy tensor (4) can be written as

—3H2(383f—|- 207f) + 3H83f — 3H83f+ %f: Hzp,
12)

—(BH? + H)(30sf + 207 f)

— 2HOrf + Opf + %f: —K2p. (13)

The overhead dot represents the differentiation with respect to
cosmic time 7.
The torsion scalar for the metric (11) is written as

T = —6H> (14)

The torsion scalar and Ricci scalar are related together as
R=-T+B (15)

All the standard activity in relativity carried out is made with
the Ricci scalar R; however, in f(7, B) gravity it is made with
the torsion scalar T alongside the boundary term B. This issue
discloses to us that these models are distinctive just by the
limit (boundary) term [59]. The limit term for the metric (11)
is obtained as

B = —6(H + 3H?). (16)
The Ricci scalar R from (15) is found as
R = —6(H + 2H?).

However, the standard forms of Friedman equations are of the
form

3H? = K?py, (17)

2H + 3H? = — Kk, (18)

As the Universe is overwhelmed by another fluid other than
an ideal fluid in f(7, B) gravity, the parameters p,, and p,, are
written as follows:

19)
(20)

Prot = P+ Pys
Dot =P + Pg-

Recently, considering two cases of a non-interacting and
interacting fluid scenario Aditya et al [62] investigated the
dark energy phenomenon by studying the Tsallis holographic
dark energy within the framework of the Brans—Dicke scalar
tensor theory of gravity (where the Brans—Dicke scalar field is
a logarithmic function of the scale factor a(f) and Hubble’s
horizon as the IR cut-off).
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Figure 1. Spatial volume, the Hubble parameter and scalar expansion
versus cosmic time for the appropriate choice of constants: a; = 4,
by =1and v=22.

Using equations (12), (13), (17)—(20), we find p, and
Pa as

K2p, = 3H2(1 + 30pf + 20rf) — 3HOpf + 3HOsf — %f,
©2))

K2p; = —3H2(1 + 38pf + 207f) — H(Q2 + 30sf + 20+1f)

—2HOrf + Opf + %f,
(22)

where the quantities p, and p, are the parts of the energy
density and pressure, respectively, appearing from f(7, B)
gravity, and these are representative of dark energy. The
expressions of p; and p, presented in equations (21) and (22)
are slightly different from those of the equations presented in
(12) and (13) in view of the standard Friedman equations
provided in (17) and (18). Hence, we consider that
equations (21) and (22) are the density and pressure of dark
energy for f(T, B) gravity. Here, we have considered f =
f(T,B)=aT™+ (BB".

The measurements with red-shift data for supernovae
from SNe-Ia have led to the prediction of an accelerating as
well as flat Universe with € = Q,, + Q4 = 1, where the
values ,, = 0.3, Q4 = 0.7. This value of the density para-
meter {24 corresponds to a cosmological constant that is very
small, but nevertheless, non-zero and positive. The compo-
nents of the total energy density parameter {2, such as the
energy densities for dark energy {2y and matter €2, are given
as [63]

Qq = :—d = % (23)
O = pﬁ = 3"#, 24)

where p._ is the critical energy density of the Universe.

4. Explication of isotropic homogeneous space-time

The most striking revolution of the modern cosmology (type-
Ia supernovae) is a consensus on the conclusion that the
Universe has entered a state of accelerating expansion at red
shift z ~ —0.5 with the range of deceleration parameter
—1 < g <0 (the exact value is ¢ = —0.45). The law of
variation for the Hubble’s parameter was initially proposed by
Bermann and Gomide [64] because FLRW space-time yields
a constant value of the deceleration parameter, and later it was
valid for the time-varying deceleration parameter [65]. After
the discovery of the late-time acceleration of the Universe,
many authors have used the constant deceleration parameter
to obtain cosmological models in the context of dark energy
within the general theory of relativity and also modified
theories of gravity. The deceleration parameter is defined as
ad

a

The sign ¢ indicates whether the model accelerates or
decelerates. The negative sign ¢ indicates acceleration,
whereas a positive value stands for deceleration. Also, recent
observations of SNe-Ia reveal that the present Universe is
accelerating for H > 0 and ¢ < 0. In this article, we use the
well-known relation between the Hubble parameter H and
scale factor a [66] as

H = ba™", (26)

where b > 0 and 7 > Oare constants. The above relation

yields a constant deceleration parameter. '
Using the definition of the Hubble parameter H = Z, we

can get

@ = ba !, 27
i=—b*(n — a2+l (28)
Consequently, the deceleration parameter g takes the form
g=-1+mn, (29)
which is a constant. Integration of equation (27) yields
a = (bt + by)i = (art + by)", (30)

1
l+q’
are constants of integration.

From equation (30), it is observed that the scale factor of
the model is the function of cosmic time, which increases
with time at ¢ > —1, decreases with time at ¢ < —1 and does
not exist at ¢ = —1.

provided v = % = where ¢ = —land a; = nb = 0, by

5. Dynamical parameters and their physical
discussion

The dynamical parameters like spatial volume, the Hubble
parameter and scalar expansion have the following
expressions.

The spatial volume of the metric is

V=a’= (at + b))>. 3D
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Figure 2. Tsallis holographic dark energy density versus cosmic time
for the appropriate choice of constants: a; = 4,b; = 1,6 = 0.5, 1.0,
1.5 and v = 2.2.

The Hubble parameter is
nai

H=—. (32)
ait + by
The scalar expansion is
0 =3 — 04 (33)
ait + by

In our investigation, it is found that the spatial volume V
and the scale factor a of the Universe are built up with a
constant value at r — 0, and with the expansion of cosmic
time they are consistently growing; when t — oo the spatial
volume V and a — oo. This shows the model starts with
constant volume at t — 0 and expands with infinite time (see
figure 1). Additionally, the scalar expansion and the Hubble
parameter are both consistent throughout the expansion of the
Universe, which shows that the Universe is expanding with
the expansion of cosmic time; however, the rate of expansion
decreases to a steady worth, which shows that the Universe
begins to evolve with constant volume at t+ — 0 with the
infinite rate of expansion.

The graphical behavior of the Tsallis holographic dark
energy density (which is obtained from equation (10) together
with the value of the Hubble parameter given in
equation (32)) versus cosmic time for the appropriate choice
of constants, a; = 4, by = 1 and v = 2.2, is well-defined in
figure 2 towards 0 < 6 < 2, out of which for 6 = 1.0 the
Tsallis holographic dark energy density reduces to holo-
graphic dark energy density.

The expressions of dark energy density and pressure
from equations (21) and (22) are obtained as

P 3ai~? Bmay — 2mPa + ma — 3oy + a)as
@t + by 3(y = i@t + by
_ BQn + Dby 18maa; ya,

2art + b)) (art + by

(34)

104

Energy density

: ; ; ; ; ;
0 50 100 150 200

Cosmic time
Figure 3. The behavior of dark energy density versus cosmic time ¢

for the appropriate choice of constants: a; = 4, by = 1, a = 0.1,
B=36,m=1,n=1and v=22.

Pressure
&
o
1

4 4
-40 -
-50 4
60 -
0 v r v r v . . .
10 20 30 40
Cosmic time

Figure 4. The behavior of dark energy pressure versus cosmic time ¢
for the appropriate choice of constants: a; = 4, by = 1, a = 0.1,
B=36,m=1,n=1and v =22

and
= 1 =37 as
T @+ b 4Gy — D@t + b
b3
+ 2
3v(ait + bp)™
7 12nﬁa137b2 amas
¢ b)2n+3 2 3~ — 1 t b 2m—1"
(a1t + by) ary(3y — D(ait + by) 35)
where a, = [6a?7(3y — DI, by = [-6a’y*]", a =

%m’yzaz + %monaz + %mz(m — Doaa, + %7(37 —1) and

by = 3n0Byby — nBby, — 2n(n — 1)vby + %ﬂwbz.
It is seen that the dark energy density is consistently
non-negative and a decreasing function of cosmic time
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Figure 5. The dark energy equation of state parameter versus cosmic
time for the appropriate choice of constants: a; = 4, by = 1,
a=01,6=36,m=1,n=1and v=2.2.

(see figure 3), while the pressure is initially positive and, with
the expansion, it becomes negative (figure 4). In the begin-
ning, when ¢+ — 0 the Universe has a constant energy density
and pressure, whereas when ¢ — oo the energy density
p; — 0 and pressure p; < 0. It is interesting to take note that
the dark energy density acquired in equation (8) obtained in
general relativity and the component of the dark energy
density obtained from f(7, B) gravity presented in
equation (34) are both exhibiting the same behavior (in
relation to inverse cosmic time) just for the selection of
constants, i.e. 6 = B = 1.

From equations (33) and (34), the expression of the dark
energy equation of state parameter is obtained as

underlying stage, when the Universe began to grow for a slight
interval of cosmic time, the equation of state parameter had the
value w; > 0, i.e. the model behaved like matter dominated once
at the beginning, while with expansion it differs and varies from
the quintessence region (w, > —1) at a later time with the value
—0.9 ~ —0.97. Henceforth, at a later time, the model shows a
quintessence model and remains present in the same quintessence
dominated region at infinite expansion of the model, which bears
some similarity to the hypothetical outcomes originating from
SNe-Ia information together with cosmic microwave background
radiation anisotropy and galaxy clustering statistics.

From equations (23) and (24), the components of the
total energy density parameter, such as energy densities of
dark energy and dark matter, are obtained as

O — aly  GBmay — 2mPa + ma — 3ay + a)a,
= 2 + 242 _ 2m—2
o 9y e (v — D(ait + by)
B8@n + 1)b,
v2a26(ait + b)> 2

6ma; a,
Yolayt + by)*m

(37

alzfy QBmay — 2mia + ma — 3ay + @)as
o 9020y — Diat + b2
B8@2n + 1)b,

V2a26(art + b2

Qm=1—

6ma;a,
yo(ayt 4 by)2mtl

(38)

Using equations (37) and (38), the total energy density
parameter takes the form

Q=04+ Q=1 (39)

One can see from the above equation that the total energy
density parameter is equal to 1, which recommends that the
model is flat.

aly(l —37) as + b3 - 12n6ai by ama
(it + by)? By = D@t + b)) 3v(at +b)*" (art + by)>*3 2a17G3y = D@t + by (36)
Wy =
3aly? + Bmay —2m*a+ma —3ay+@a;  BQn+ )by 18maai~as
(@t +b)? 3(v— D@t + by 2at+b)P T (@t b

Equation (36) represents the equation state parameter of dark
energy, which is depicted in figure 5. The outcomes originating
from SNe-la information together with cosmic microwave
background radiation anisotropy and galaxy clustering statistics
yield w; = —0.97 (Wilkinson Microwave Anisotropy Probe,
SNe-la results) at a 68% certainty level of dark energy. These
outcomes are reliable with the time-variable equation of state
parameter w,(f) and, furthermore, for the time-free w,;. On the

2majas

2na1 b3

6. Physical acceptability and stability of solutions

6.1. Stability of the model

For the stability of the corresponding solution in the present
model, we should check the physical acceptance. For this, firstly
it is required that the velocity of sound should be less than the
velocity of light, i.e. within the range 0 < 92 = :?)_f,' For the

present model, we obtained the velocity of sound speed as

_ 12nPaj*yba(2n + 3) 4

73y — D@ + b))+

3y(art + by)*'+!

amay(l — 2m) )

(@t + b2t 273y — D@t + bp*"

( Caty(-3y
9 = (@t +br)?

6a|372

2may(3mary — 2m2a 4+ ma — 3ay + a)ay

(40)
nfay(2n+ 1)by

s
(_ (a1t +by)? 3(y = D(at + by)*+!

18maa 14'ya2(2m +3) )

(art + by ! (art+ by)>m+4
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Figure 6. The stability factor (velocity of sound) of the dark energy

model versus cosmic time for the appropriate choice of constants:
ay=4,b=1,a=01,6=36,m=1,n=1and y=22.
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Figure 7. The behavior of the NEC, p, + p, > 0 in the dark energy

model versus cosmic time for the appropriate choice of constants:
ag=4b=1,a=01,=36,m=1,3,57,n=1and y=2.2.

Figure 6, shows that at the initial epoch 9> > 0, and with
the expansion 19? < 0. Hence, the model is initially stable, but
with expansion it is unstable.

6.2. Energy conditions

In this section, we are going to discuss the various energy
conditions, which are linear combinations of the energy
density and pressure. The various energy conditions available
in the literature are namely the weak energy condition (WEC),
strong energy condition (SEC), null energy condition (NEC)
and dominant energy condition (DEC) [67-70]. Since ‘nor-
mal’ matter speaks to positive energy density and pressure,
thus conventional-issue will naturally fulfill the NEC, WEC

100 4

50

Strong energy condition

-50 4

v T v T v T v
0 5 10 15 20 25
Cosmic time

Figure 8. The behavior of the SEC, p;, + 3p, > 0 versus cosmic time

with the appropriate choice of constants: a; =4, by =1, o = 0.1,
B8=36,m=1,n=1and v=22.

o

Dominant energy condition
N
1

. . : . : . :
0 5 10 15 20
Cosmic time

Figure 9. The behavior of the DEC, p, — |p;| > 0 versus cosmic

time with the appropriate choice of constants: a; = 4, b; = 1,
a=01,6=36,m=1,n=1and v=2.2.

and SEC. In this investigation, we should emphasize the
energy conditions for the components of dark energy which
come out from f(7, B) gravity. The different types of energy
conditions are defined as:

1) WEC: g, 20,0, +p 2 0.
(i) SEC: p; + 3p, = 0.
(iii) NEC: p;, + p, = 0.
@iv) DEC: p, — |p| = 0.

The energy density of the Universe is positive with the
evolution. The expansion of positive energy density in the
NEC yields the WEC. The condition of time like the killing
vector results in the SEC, whose violation describes the
accelerating expansion of the Universe [68]. The singularity
theorems by Hawking—Penrose require the validity of both the
WEC and SEC. The NEC and WEC are very important
among all energy conditions as the remaining energy
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conditions violate due to the transition from being attractive
to repulsive, which is just like the behavior of dark energy for
cosmic acceleration.

Our investigation of current observations suggests that
the WEC, NEC and DEC are all fulfilled (see figures 3, 7, 9)
through the expansion of the Universe, while the SEC is
validated in figure 8 at some point as the epoch of galaxy
formation (initially) and then violated. Specifically, the clas-
sical singularity theorem that is significant in demonstrating
the presence of the huge explosion utilizes the SEC [43]. The
plots of p; and p, + p, versus cosmic time appear in the
panels of figures 3 and 7. We see that p, represents positive
decreasing behavior initially for a small interval of cosmic
time, and with expansion it becomes negative and remains
present as p,; < 0 for a whole range of cosmic time. The plot
of p, along the cosmic time is positive when decreasing and
approximately constant but remains positive. The plot of
p; + p; versus cosmic time represents decreasing behavior
with respect to . However, the plot indicates a positive value
of p; + p, throughout the expansion of the model. Thus, the
WEC is also satisfied for our derived model.

6.3. Validity of generalized second law of thermodynamics at
the horizon

Here, we have examined the validity of the generalized
thermodynamics second law of the f (7, B) theory of gravity.
The energy—momentum tensor of additional geometric com-
ponents satisfies the following conservation equation [71]

pu=3H(py + p2) = Z%er). 41)

From equation (41) the energy conservation equation is not
satisfied if 2f, = 0. We can find the radius of the dynamical
apparent horizon for the flat FLRW space-time as

Fa=—. (42)
The time derivative of the above equation together with
equations (17) and (18) gives
Jrdia
21G

In general relativity and f(R) gravity the Bekenstein—Hawk-
ing horizon entropy is defined as S, = %, where A = 4773 is

= —F3H (P + P dt. (43)

the area of the apparent horizon [44] and S, = %, where

Gt = ? which is associated with the Noether charge, the so-

called V\R’ald entropy [44]. Similarly, f(7T) gravity is defined as
Sy = —2, where Gy = fﬁ [72]. In the f(T, B) gravity theory

4Gy T
the Wald entropy is defined as [73]
ACH)

Sp= ————. 44

h G (44)

From equations (43) and (44), we get
Fa(—d
i _ YD 4 gt + pyr (45)

27TFA G

The associated temperature of the apparent horizon through
the surface gravity ks, is defined as [73]

e
Th = —, (46)
27
where kg is given by
Ko = —%‘(2}12 + H). (47)

From multiplication of (1 _h ) on both sides of

2HFy
equation (45), we have

Ty dS, = 477 H (Poy + Pro)dt

mia T d(2f)de

- ZﬂfiH(p[Ut + P dFa — G

(48)
In general relativity, the Misner—Sharp energy is defined as
E = (;—AG), whereas in f(7, B) gravity, this definition can be
extended as [73]

g= DG (49)
2G

From equations (42) and (49), the Misner—Sharp energy turns

out to be

3H?(2f;)
2G

where V = (4/3) 77, is known as the volume of the interior
region of the apparent horizon. From equations (17) and (49)
one can find

E=-V = Vpors (50)

dE = —%dfr + dmpy, F2dFy — ATHF (0, + Do) At

(5D
Using equation (48) and (51), we get
TydS, = —dE + 2772 4(py — Prog) 474
- %‘(hfﬁﬂ + 1)dfy (52)

The work density is obtained as

A (m)af ~(d)af

1 1
W= _E(T hosp +T hap) = 5(pt0t — Po)- (53)

Equation (52), with the help of the above equation, can be
written as

TydS, = —dE + WdV — %(27@,@ + Ddf, (54
which takes the form

Ty dS), + TydS = —dE + WdV. (55)

In the above condition the term dS, = 2277, Ty + 1)df;

GTy
can be treated as an entropy creation in a non-balanced (equi-

librium) thermodynamic framework because of the Lagrangian
depending upon both the torsion scalar and the boundary term
[73]. The f(T) gravity includes just 7, while f(7, B) gravity
includes both the torsion and boundary terms. In f(7, B) gravity
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Figure 10. The conditions for validity of the thermodynamical
parameter in the dark energy model versus cosmic time for the
appropriate choice of constants: a; = 4, by = 1, a = 0.1, 8 = 36,
m=1,n=1and v=22.

dS = 0, due to 2df; = 0. Here, we may characterize the
compelling entropy term as being the total of the horizon
entropy and the entropy generation term as S, = S;, + S, with
the goal that equation (55) can be revamped as

TydSiy = —dE + WdV. (56)

To examine the second law of thermodynamics in f(7, B)
modified gravity, one needs to consider the Gibbs equation in
terms of dark energy and matter components as

7~lotdst = d(pth) + Piot dv = Vd(ptot) + (ptot + ptot)dV,
(57)

where S stands for the total entropy of the system inside the
horizon. Here, we assume that the relation between the total
temperature of the energy source inside the horizon and to the
temperature of the apparent horizon as T, = €7j,, where
0 < € < 1. The authenticity of the generalized second law of
thermodynamics needs the condition

ds, . d@S)  dSw
dt dr dt

Using the FLRW equation along with equations (55) and (58),
the required condition for validity of the generalized second law
of thermodynamics is written as

fr
GH?

Pourbagher and Amani [71] investigated the accelerated
expansion of the Universe by investigating the stability of the
model using the sound speed parameter along with the validity
of the generalized second law of thermodynamics in the f(7, B)
theory of gravity. Bahamonde et al [73] studied different fea-
tures of a flat FLRW cosmology and showed that the FLRW
equations can be transformed into the form of the Clausius
relation, which contains contributions both from horizon entropy
and an additional entropy term introduced due to the non-
equilibrium, and formulated the constraint for the validity of the
generalized second law of thermodynamics.

> 0. (58)

{2 —¢)—2(1 —e)QH — H)} > 0. (59)

The derived result shows that the validity of the gen-
eralized second law of thermodynamics is satisfied with
conditions of thermodynamic equilibrium. This issue is
pressing in that the temperatures of the Universe outside and
inside of the apparent horizon are either similar or different.
Hence, by applying the thermodynamic equilibrium condi-
tion, the generalized second law of thermodynamics for the
dark energy in the f(7, B) gravity model in a flat FLRW
Universe with an apparent horizon is validated in the whole
Universe (see figure 10), which resembles the work examined
by Pourbagher and Amani [71] and Bahamonde et al [73].

7. Conclusion

In the present model, the Universe starts with a steady state and
increases gradually. At a specific time, the Universe suddenly
exploded and expanded to a large extent, which is consistent with
the Big-Bang scenario. The Hubble parameter starts with a con-
stant value and tends to zero as time tends to infinity. Hence, in
these circumstances, the Universe asymptotically has ways to deal
with de-Sitter space. The deceleration parameter is constant and
g < 0, indicating the accelerated expansion of the Universe. It is
fascinating to take note of the fact that both the dark energy
density in general relativity and f(7, B) gravity are the equivalent
to the specific selection of constants: essentially « = 0.1, 8 = 36
and 6 = B = 1. The energy density of dark energy is constantly
positive and declining with cosmic time, while the pressure at
t — 0 is positive, and with spreading out it becomes negative. At
the initial stage, t — 0, the Universe has constant energy density
and pressure, for example, p; and p,— constant: however, with
the expansion of the Universe it decreases, and at t — oo these
are p;, — 0 and p, < 0. The equation of state parameter of dark
energy is dependent on cosmic time. At a beginning period, when
the Universe began to grow for a slight interval of cosmic time, it
behaved as though matter dominated once, although with the
expansion it varies from the quintessence region to the ACDM
model, which bears a resemblance to the theoretical experiments,
such as SNe-la in collaboration with cosmic microwave back-
ground radiation anisotropy; along with that it takes a negative
value, which is in a good enough range of the survey from SNe-Ia
observations. The value of the total density parameter is one
which gives an idea about the fact that from the beginning to later
times the Universe is flat, which is compatible with the obser-
vational results. Also, for a sufficiently large time, the derived
model predicts isotropy. This result also shows that in the early
Universe, i.e. during the matter-dominated era (radiation) and
dark energy era domination, the Universe was always isotropic.
The investigation of energy conditions affirmed that the WEC
and NEC are fulfilled throughout the expansion, while the SEC is
violated and the DEC is not observed at first and, with an
extension, it performs conversely. However, in the case of the
violation of energy conditions some constraints may be implied
accordingly. The analysis of the SEC for specific f(7, B) gravity
models indicates accelerating expansion of the Universe. The
graphical analysis shows that the WEC, NEC and DEC are
satisfied, while the generalized second law of thermodynamics is
substantial, not just for similar temperatures between the inside of
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the horizon and apparent horizon but additionally for a change in
temperature. We observed that the torsion of the Universe is time
dependent. Finally, we validated the thermodynamic equilibrium
conditions for the generalized second law of thermodynamics in
f(T, B) gravity for dark energy.
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